Analysis of Pax6 contiguous gene deletions in the mouse, Mus musculus, identifies regions distinct from Pax6 responsible for extreme small-eye and belly-spotting phenotypes.

نویسندگان

  • Jack Favor
  • Alan Bradley
  • Nathalie Conte
  • Dirk Janik
  • Walter Pretsch
  • Peter Reitmeir
  • Michael Rosemann
  • Wolfgang Schmahl
  • Johannes Wienberg
  • Irmgard Zaus
چکیده

In the mouse Pax6 function is critical in a dose-dependent manner for proper eye development. Pax6 contiguous gene deletions were shown to be homozygous lethal at an early embryonic stage. Heterozygotes express belly spotting and extreme microphthalmia. The eye phenotype is more severe than in heterozygous Pax6 intragenic null mutants, raising the possibility that deletions are functionally different from intragenic null mutations or that a region distinct from Pax6 included in the deletions affects eye phenotype. We recovered and identified the exact regions deleted in three new Pax6 deletions. All are homozygous lethal at an early embryonic stage. None express belly spotting. One expresses extreme microphthalmia and two express the milder eye phenotype similar to Pax6 intragenic null mutants. Analysis of Pax6 expression levels and the major isoforms excluded the hypothesis that the deletions expressing extreme microphthalmia are directly due to the action of Pax6 and functionally different from intragenic null mutations. A region distinct from Pax6 containing eight genes was identified for belly spotting. A second region containing one gene (Rcn1) was identified for the extreme microphthalmia phenotype. Rcn1 is a Ca(+2)-binding protein, resident in the endoplasmic reticulum, participates in the secretory pathway and expressed in the eye. Our results suggest that deletion of Rcn1 directly or indirectly contributes to the eye phenotype in Pax6 contiguous gene deletions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Pax6 contiguous gene deletions in the mouse, Mus musculus, identifies regions distinct from Pax6 responsible for e

In the mouse Pax6 function is critical in a dose-dependent manner for proper eye development. Pax6 contiguous gene deletions were previously shown to be homozygous lethal at an early embryonic stage. Heterozygotes express belly spotting and extreme microphthalmia. The eye phenotype is more severe than in heterozygous Pax6 intragenic null mutants, raising the possibility that deletions are funct...

متن کامل

Relationship of Pax6 activity levels to the extent of eye development in the mouse, Mus musculus.

In this study we extend the mouse Pax6 mutant allelic series to include a homozygous and hemizygous viable hypomorph allele. The Pax6(132-14Neu) allele is a Phe272Ile missense mutation within the third helix of the homeodomain. The mutant Pax6 homeodomain shows greatly reduced binding activity to the P3 DNA binding target. Glucagon-promoter activation by the entire mutant Pax6 product of a repo...

متن کامل

Molecular Characterization of Pax6 Through Pax6: An Extension of the Pax6 Allelic Series and the Identification of Two Possible Hypomorph Alleles in the Mouse Mus musculus

Phenotype-based mutagenesis experiments will increase the mouse mutant resource, generating mutations at previously unmarked loci as well as extending the allelic series at known loci. Mapping, molecular characterization, and phenotypic analysis of nine independent Pax6 mutations of the mouse recovered in mutagenesis experiments is presented. Seven mutations result in premature termination of t...

متن کامل

Forebrain patterning defects in Small eye mutant mice.

Pax6 is a member of the Pax gene family of transcriptional regulators that exhibits a restricted spatiotemporal expression in the developing central nervous system, eye and nose. Mutations in Pax6 are responsible for inherited malformations in man, rat and mouse. To evaluate the role of Pax6 in forebrain development, we studied in detail mouse Small eye/Pax6 mutant brains. This analysis reveale...

متن کامل

Evaluation of effectiveness of some mitochondrial genes in biosystematics and phylogeographic studies of house mouse (Mus musculus ) subspecies

The identification of the efficiency of some mtDNA genes of Mus musculus species complex (house mouse) for biosystematics research was studied in this approach. Recent studies have made use of different mitochondrial genes including NADH dehydrogenase genes, cytochrome b gene, cytochrome oxidase genes, D-loop region and whole mtDNA genome to study the house mouse species. Usage of each of these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 182 4  شماره 

صفحات  -

تاریخ انتشار 2009